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Abstract—Major principles of the method of the linear codes multithreshhold decoding as
search for the global functional extremum for a great number of variables are considered. It
was demonstrated that the multithreshold decoding efficiency is close to the results ensured by
the optimum exhaustive search methods. Decoding complexity under software and hardware
realizations is evaluated.

1. INTRODUCTION

As is known, the use of error-correcting coding enables to solve a variety of tasks in digital
networks, which are in principle inaccessible under analog signal processing. The main advantage
of communications systems using coding amounts to the fact that the efficiency of the channels’
use, i.e. their efficiency coefficient, appear to be many times as high as in cases when codes are
not used. The coding gain is usually chosen a measure of efficiency. It shows to what degree it
is possible to decrease the specific energy of the channel, i.e. the ratio of data bit transmission
average power to the noise power spectral density Eb/N0 with usage of certain coding and decoding
methods as compared with the case without their usage to ensure maintenance of the high degree
of transmission validity, which is essential in this system. For example, the required bit error rate
(BER) shall amount to 10−6. It is by this potential that the necessity of coding use is predetermined
for systems of space, satellite and mobile communications.

The ability of codes to ensure highly reliable data transmission with a low signal level enables
to minimize the hardware dimensions, increase speed of transmission via most expensive digital
communications channels, cut on the antennae dimensions substantially and increase the life time of
self-contained power supply manifold. At that coding gain can reach 10 dB and more in many cases.
Apart from that, it is important to realize that the necessary reliability of the data transmission
in channels with noise and digital data storage systems is only to increase with time, which, other
things equal, will result in toughening of requirements to the coding systems. This will in turn
contribute to the growth of the provided coding gain, which should be realized in the least expensive
way, i.e. on the basis of efficient codes and indispensably very simple and fast decoders.

Both decoders realizing the well known to specialists Viterbi algorithm (AV) [1], and also much
more complex code structures, such as turbo codes [2] and low-density parity-check codes [3], are
currently being used in digital communications. Nevertheless, the currently used coding systems,
especially those for high-speed channels, are still very complex and inefficient. Under consideration
bellow are the theoretical basis and concrete parameters of a highly efficient, high performance and
very simple iterative algorithm of error correction in high noise level channels, which is the result
of the development of the concept of linear convolutional codes majority decoding [4].

1 The work has been supported by Russian Foundation for Basic Research (grant N08-07-00078a)
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2. ITERATIVE DECODING PRINCIPLE

In the past decade the theory and technology of error-correcting coding has progressed greatly.
The introduced by many authors in the seventies of the twentieth century methods of iterative
decoding of accepted messages turned out to be inefficient due to powerful error grouping at the
decoder output. An example of such a scheme with a threshold decoder (TD) [4] for a convolutional
code is given in Fig. 1.

Figure 1. An example of a scheme of iterative decoding on the basis of the convolutional code threshold decoder

Low efficiency of the aforementioned decoding scheme stemmed from intense grouping, i.e. prop-
agation of errors at the threshold decoder. In fact, if under a certain noise level in a binary symmet-
rical channel with independent errors the TD has at a certain moment taken a wrong decision on
the next information symbol, a very dense error packet usually emerges at the output of that TD.
For example, let us assume that a sequence, improved to a certain extent after the first decoding
attempt, has come from the first TD output in Fig. 1 to the input of the second one. Then, if there
are no errors in a certain part of the information sequence after the first TD, there is no need for
a second decoder. But when an error emerges at the output of the first TD, which is usually a
starting point for the typical error packet of this TD, it appears that the second decoder, copying
exactly the scheme of the first one and tuned only to random errors correction, will most probably
fail to correct the packet. Hence there is no need to use it in this case.

It should be noted that codes with low level of error propagation in TD were completely unheard
of in those days. Nevertheless, the problem was solved in full later on with the help of methods
described in [5]–[15]. In this connection of great importance appears to be the considered further
on new approach to the realization of simple efficient error correction procedures, which is under
development since 1972 and is called multithreshold decoding (MTD) [5].

3. GLOBAL FUNCTIONAL OPTIMIZATION PRINCIPLE

Surprisingly the development of methods of error-correcting codes decoding has not for a long
period of time been in any way associated with methods of solving tasks of functional optimiza-
tion of many discrete variables. Nevertheless, it should have been quite natural to consider the
decoding, i.e. search of a single code word out of an exponentially great number of possible mes-
sages, proceeding from this concept. However, the majority of the previously developed decoding
algorithms never used for the search of the best decoder decisions the well known and manifold
powerful optimization procedures, which could be reasonably applied to the search of code words
located at a minimum possible distance from the accepted message. It should be noted, that the
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widely applied in communications engineering Viterbi algorithm, used for decoding by maximum
likelihood of short convolutional codes, does not refer to the optimization procedures class either,
as it is directly searching for an optimum solution on the basis of a very convenient for realization
full enumeration method.

Alongside with that, certain decoding algorithms, specifically, threshold decoders [4], being the
simplest error correction methods, are almost possessing the properties needed for the realization
of full-fledged, efficient and at the same time exceptionally simple iterative decoding procedures,
which would really have been the methods of the search for the functional global extremum of a
very great amount of variables.

To substantiate this let us consider an example of the simplest system of coding/threshold
decoding with the code rate R = 1/2 and the minimum code distance d = 3, as shown in Fig. 2.

Figure 2. Special projection of the coding system clarifying the new interpretation of the syndrome vector

As follows from the coder type and the simplest majority decoder correcting in this simple
example a single error, the decoder comprises an exact copy of the coder, which is forming its
estimates of the code-checking symbol on the basis of the received via the channel code information
symbols (possibly containing errors). These symbols appear at the decoder K point and after the
adding on the half-adder with the received from the channel checking symbols V̂ form symbols
of the S syndrome vector, which is dependant only on the channel errors vector. Later on these
symbols come to the decoder threshold element ′ from the syndrome register, as is shown in the
Fig. 2.

The very form of the TD given in the scheme of coding/decoding enables to single out an easy way
of the organization of the proper optimization procedure, i.e. search for the best possible decision
during decoding. To that purpose let us stress the fact that has never been mentioned before: in
the decoder syndrome register there is a difference by check symbols between the received with
distortions from the channel Q = [Î , V̂ ] vector and such a code word Ar, the information symbols
of which coincide with the received from the channel information part of vector Q.

It means that the full difference between the code word, the current hypothesis-decision of
decoder Ai on the transmitted code word, and the received noisy vector Q will be in such a
modified decoder of a majority type; only one vector will be added to the TD, and the vector shall
always comply with the difference between the received vector Q and Ai, the current hypotheses
of the decoder on the information symbols. It is this decoder that is going to have the full value
of the difference, and, consequently, the full distance between the decision of the decoder and the
received vector. One should strive at decreasing this distance to the minimum possible value, which
is to correspond to the decision of the optimum decoder (OD).
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4. THE MTD OPERATION PRINCIPLE

It is this very approach to the problem of high efficiency decoding that is the basis of the
developed since 1972 special iterative multithreshold decoders [5]–[15], almost coinciding with the
classic TD and as simple in realization as their prototype.

The changes that should be introduced into ordinary TD to transform it into MTD (as follows
from the global optimization principle discussed in the previous section), amount only to the fact
that the decisions of all the threshold elements on the decoded symbols changes are first committed
to memory in the additional differential register D, primarily, naturally, a zero one. These decisions
are later on used by the following threshold elements of the decoder as an additional checking
procedure in the course of further specification of the decoded symbols’ meanings. Such a decoder is
already measuring full distances between newer and more likely potential solutions and the received
vector Q. It changes the decoded symbols in such a way that every new decision of such MTD is
always closer to the vector received from the channel. In many instances it enables to practically
completely realize the corrective potential of the used codes. Examples of concrete MTD schemes
are given in [9, 10].

After such a rather unsophisticated improvement the decoder obtains new very useful properties.
The MTD decisions at every change of the information symbols coded by it are strictly approaching
the optimum decoder’s decision ensuring in many cases the realization of this process even after
several dozens of attempts of the correction of code block or the symbol flow of the convolutional
code. Certainly, to ensure high efficiency of MTD under heavy noise in the channel it is essential to
choose only special codes with low levels of error propagation. This important issue was considered
in [6, 8, 9].

Let us further proceed with a more formal consideration of the MTD potential.

5. THE MTD MAIN THEOREM

Let a binary linear systematic block or convolutional self-orthogonal code [16] be set with the
code rate R = k/n, where k is a number of information symbols, n is the length of the code
combination.

During the transmission via memoriless BSC the optimum decoder minimizing the mean error
probability, chooses from a set 2k of equiprobable code words {A} a vector A0, for which the
Hamming distance r = |Q ⊕ A|, where Q is the received message, ⊕ – addition mod 2, would be
minimum for the whole set {A}.

Let us represent any binary code X of the n length by a pair of vectors XI and XV of k length
and (n− k) referring to the information and check parts of the vector respectively:

X = [XI , XV ].

Then, with the assumption that the parity-check matrix is represented systematically (H = [C, I]),
we have the following

Lemma. For each code vector A and received message Q the ratio is true

A⊕Q = [D, H[QI ⊕D, QV ]], (1)

where vector D of the length k is defined by the ratio

AI = QI ⊕D. (2)
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Proof. Due to the linearity of the code

S = H[QI ⊕D,QV ] = H[AI , AV ⊕AV ⊕QV ] = HA⊕H[0I , AV ⊕QV ],

where 0I – is a zero information word.
As HA = 0, with A being the code word, and H[0I , AV ⊕ QV ] = AV ⊕ QV , as AV ⊕ QV is

multiplied only by identity submatrix I of the Hmatrix, we get that vector S is equal

S = AV ⊕QV . (3)

After substitutions in the right-hand side (1) with view of (2) and (3), we find that

[D, S] = [D, AV ⊕QV ] = [D ⊕QI ⊕QI , AV ⊕QV ] = A⊕Q.

Thus the syndrome S vector is actually (as it was given in Fig. 2) a difference by checking symbols
between the coming from the channel partially distorted message and the code word defined above.
The lemma is proved.

The essence amounts to the fact that the difference B = Q ⊕ A for any received vector Q and
code word A is defined by a pair of vectors [D, S]. Using exhaustive search of all the A vectors one
is able to find vector A0, minimizing |B| and being the optimum decoder solution. By definition
with D = 0 vector S is a usual syndrome of the received message Q: S = HQ. For simplicity in
what follows we shall hereinafter and with D 6= 0 call S a syndrome as the generalization seems
natural and is not resulting in any contradictions later on. It should be also noted that there is
no need to calculate anew all the syndrome components with each change of A. It appears quite
sufficient to invert, at each change increment, only the components S with odd amounts of errors
in the changed information symbols. Nevertheless, exhaustive algorithms are most complex.

For this reason let us consider a decoding algorithm, which is very close to the threshold one,
and is, therefore, easily realizable.

1. Let the decoder at the first preparatory stage perform calculation and memorizing of vector S.
After that the realization of the decoding procedure per se begins.

2. A certain information symbol ij is chosen and for that symbol the usual sum of the syndrome
sjk

components is calculated, having as addends error ej in the decoded symbol ij (i.e. sum of
checks sjk

∈ {Sj}, where {Sj} is a set of checks as regard to component ej , corresponding to
symbol ij) and symbol dj , of the component of vector D, also referring to the decoded symbol
ij :

Lj =
∑

sjk
∈{Sj}

sjk
+ dj . (4)

Let us at that assume that originally D = 0, because prior to the decoding operation com-
mencement there is only one received vector Q in the memory of the decoder and the decoder
possesses no other more preferable hypotheses of the received message.
Let us assume the T threshold as equal to a half of all the addends in (4). For self-orthogonal
codes the value amounts to T = d/2 = (J + 1)/2.

3. Let finally all the J = d − 1 of checks, ij and dj be inverted with Lj > T and stay unchanged
with Lj ≤ T .

4. Provided no decision on the cancellation of the decoding procedure is taken the decoder reverts
to step 2.
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For the first decoding attempt the proposed procedure (as long as dj = 0, is similar to the usual
algorithm for a TD. Let us hereinafter refer to the decoder realizing the proposed algorithm as a
multithreshold decoder (MTD).

Theorem (The main theorem of multithreshold decoding). If at a random j-step MTD changes
the currently being decoded information symbol ij, then:

a) at that MTD finds a new code word A2, closer to the received message Q, then code word A1, to
which the ij meaning corresponded prior to the j-th step of decoding

|B1| = |A1 ⊕Q] > |A2 ⊕Q| = |B2|;

b) after the completion of the j-th step decoding of any subsequent symbol ik, k 6= j, is possible, so
that its change will result in further approximation to the received message.

Proof. Prior to the decoding of symbol ij it is true pursuant to Lemma

[D1, S1] = [A1I ⊕QI ,H[QI ⊕D1, QV ]] = A1 ⊕Q,

where

A1 = [A1I , A1V ], A1I = QI ⊕D1.

The weight of vector B1 before this step, amounting to |B1| = |D1|+ |S1|, can be defined as an
ordinary sum of weights W1 = L1j + X, where L1j is defined by (4) and is equal to the sum of
checks and symbol dj at the threshold element; X is the weight of the other components S1 and
D1, not included into L1j .

Let us consider code vector A2, differing from A1 only in one information symbol ij , and the
respective difference B2 = A2 ⊕ Q. As B1 and B2 differ only in the components coming to the
threshold element |B2| = L2j + X, where L1j + L2j = J + 1,as due to the code’s linearity, each
check and the dj are surely equal to 1 in only one of the two vectors Bi.

As MTD is changing ij , if L1j > T , it is essential for that to have L2 < L1 and, consequently,
|B1| > |B2|, which proves item a) of the theorem.

It is further evident that if symbol ij was not changed it is possible to decode any other symbol
ik, k 6= j, as at that the conditions of Lemma are held. In case of a change ij in accordance with the
rules of the MTD functioning after decoding ij equations A2I = QI ⊕D2 and S2 = H[QI ⊕D2, QV ]
hold, where D2 differs from D1 in symbol dj , as in the course of changes via feedback from the
threshold element of checks referring to ij , the very components of S1 are inverted, in which S2

differs from S1. Hence, we get that, after changing ij for the previously defined vectors D2, A2 and
S2 the equation holds

[D2, S2] = A2 ⊕Q,

similar to the one, occurring prior to the change of ij . Thereby with subsequent decoding steps and
changes of symbols ik, k 6= j, there will be further approximation to the received form the channel
message Q. The main MTD theorem is proved.

It follows from the theorem that with each change of the decoded symbols MTD is getting closer
and closer to the received vector Q, thus finding closer and closer to the optimum decision and more
likelihood vectors Ai. The MTD keeps viewing and matching not an exponentially great amount
of code words but only pairs differing only in a single information symbol with one of the matched
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words being in the decoder. In case the second code word turns out to be closer to vector Q, than
the one in the MTD, the decoder will switch over to that word to perform further matching with
the new intermediate vector Ai. It is clear that in principle it is possible to carry out a large number
of decoding attempts of all the code symbols. In that way convergence to the optimum decoder
decision vector A0. will be realized. It is crucial that for all that the MTD complexity remains the
same as for the customary TD: a linear one.

Let us further assume that the MTD has reached the optimum decoder’s decision, i.e. there are
symbols of vector A0. in the MTD information register. Then it is true that:

Corollary. The MTD is not going to change the decision of the optimum decoder.

Proof. If the MTD had changed during a certain step even a single information symbol in vector
A0, that would mean that another code vector A∗ was found, which was closer to Q, than A0, which
is impossible, because by definition the closest to Q word is vector A0. The corollary is proved.

Thus, the stability of the MTD decision on the optimum decision: having reached that, the MTD
is going to stay there. It is very important as the algorithm implies an opportunity of multiple
changes of the decoded symbols.

It might also be noted that during the proving of the main MTD theorem the uniqueness of
the decoded symbol ij was not used in any meaningful way. It follows that the aforesaid decoding
procedure can be applied to any group of information symbols [6, 8, 9].

To apply the MTD algorithm while decoding in a channel with additive white Gaussian noise
(AWGN) with quantization of the received binary stream into M levels, M > 2, , it is convenient
to present the likelihood function Lj as

Lj =
∑

sjk
∈{Sj}

wik(2sjk
− 1) + wdj (2dj − 1). (5)

For an ordinary BSC this expression with check weights wjk
, amounting to 1, is evidently equiva-

lent (4). With transfer to a Gaussian channel, i.e. in case of M > 2 signal quantization levels, weight
coefficients for the calculation of Lj may be chosen as relatively small real or integer numbers. Thus,
the symbols decoded in the MTD for a Gaussian channel should be changed with Lj > 0. At that,
if M À 1, then, as is known, the corrective potential of the used codes and good algorithms of
their decoding, MTD included, are usually improved by about 2 dB by the signal/noise ratio at
the decoder input.

6. DECODING ERROR PROPAGATION IN MAJORITY DECODERS

It follows from the results we have proved above that the increase of the number of attempts
to correct the symbols decoded before with the help of the MTD might be actually of use, as
with every change of the information bits there is a transfer to decisions with higher likelihood.
Nevertheless, it does not mean that the MTD is sure to arrive at the optimum decision. For many
codes there exists a rather numerous amount of channel errors combinations, which are corrected in
the course of optimum decoding but not corrected with the help of MTD. To a considerable extent
it occurs due to the fact that threshold decoders are to a great extent subject to the influence of
the error propagation effect. The second and the rest subsequently connected improved TDs, which
comprise, for example, a convolutional MTD, usually have to operate mostly with streams of error
packets from prior iterations of the decoders’ decoding.

In [6, 8, 9] a method of estimate of error propagation for self-orthogonal codes is given [16], it
amounts to the concept that probability estimates for the emergence of single errors and packets at
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the TD output are calculated using multidimensional probability generating functions. This method
is helpful both for the selection of code in the least degree subject to error propagation influence,
and for the choice of optimum weights and thresholds in the MTD ensuring the least probability
values for its decoding errors.

A basis for a new approach to error propagation estimates is a rather convenient way of esti-
mating the probabilities for the emergence of two errors within the constraint length or within each
code block. It enables to generalize this method to comprise decoding error packets of any weight.
To ensure high efficiency of the MTD it usually suffices to consider packet weights not exceeding 3.
At that one has to calculate within the parameter space with the number of dimensions 23d, where
d is the minimum code distance of the code. But for codes with d ∼ 7 and more this task is too
complex for computations.

Nevertheless, in the course of further investigation, methods of considerable simplification of
estimates of packets emergence probability were found, which later on enabled to formulate a
complex of criteria for future creation of codes with very low probabilities of the emergence of error
packets during majority decoding. The respective algorithms for the development of such codes
with the length n require realization of the order n4 operations, which enables a search for efficient
codes with lengths of the order of 500000 bits. Recently these algorithms were improved further.

While decoding close to the channel capacity it is essential to use only very long codes. That is
why the completed development of constructive methods of the creation of codes with the required
quality solved in full the problem of choosing codes with modest error propagation level for high
efficiency decoders of the MTD class.

In the following sections we shall consider parameters of different decoders of the multithreshold
type.

7. BASIC MTD PERFORMANCE

The dependence of BER on the signal/noise ratio Eb/N0 in a channel with AWGN with the use
of a soft-decision modem for a multithreshold decoder of self-orthogonal codes with the code rate
R = 1/2 and different code distances d is given in Fig. 3. The dot line shows a rather exact estimate
of the decoding BER for the same codes using an optimum decoder. The given graphs show that
MTD actually ensures close to optimum decoding of the correctly chosen codes with a rather high
noise level in the communications channel.

8. THE MTD ALGORITHM REALIZATION COMPLEXITY

The main MTD’s advantage is the extremely low complexity of decoding. As in case with a
traditional TD, at each iteration weighted checks are summed in the MTD; these are further on
compared with the threshold and changed together with the decoded symbol provided the threshold
is exceeded. The number of iterations of decoding I in this case is no more than 50, and the general
MTD decoding complexity is evidently estimated for d < 25 as

N1 ∼ (d + 2)(I + 4).

But it is possible to decrease considerably the amount of iterative sum calculations at the
threshold as the symbols at each of the threshold elements change in the course of the decoding
process very seldom. If with the same conditions at I and d the decrease of the MTD performance
is possible only by 0,1 dB in energy, which is usually quite acceptable, the amount of calculations
will be decreased even more:

N2 ∼ c1d + c2I,
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Figure 3. Performance of MTD for a code with R = 1/2 in a channel with AWGN

where constants c1 and c2 are small integers [8, 9, 10].
The fact, that during decoding each iteration in the MTD actually requires only a number of

simplest operations of the addition and checking types, results in the situation when the iterations
number growth gives almost no decrease of the actual performance rate of the decoder, for example,
in the software realization variant. As a demonstration of this algorithm property we can refer to
a demo program of MTD for a convolutional code with R = 3/4. . It is used in the system of
specialized digital television and ensures performance of about 4. . . 10 Mbit/s, on an ordinary
personal computer, which ensures with ample reserve the processing of a color television signal
with a very low signal/noise ratio. The codes used in this case are subjected to the standardization
procedure. The demo program and a simple manual to it can be taken from a large topic website of
the SRI RAS www.mtdbest.iki.rssi.ru, where it is displayed in the education section. Actually the
comparison of MTD with other methods demonstrated that the processing rate on the MTD basis
appears to be only about by two orders of magnitude higher than with the use of, for example,
turbo decoders with comparable coding gain [17]. A demo program for a LDPC code is also to be
found there.

In case of hardware realization of MTD, for example, at FPGA Xilinx or Altera, the tests carried
out confirmed their good efficiency parameters with simultaneously very high throughput up to
1,6 Gbit/s. Such an opportunity emerged after the realization of patented engineering solutions for
hardware MTD. Pursuant to these solutions such a decoder turns into a single-cycle decision making
circuit, and within each cycle it is able to take up to 40 decisions on the symbols under decoding,
while the limiting frequency of cycles is determined by the maximum possible rate of the shift of
data received from the channel by the decoder’s shift registers, which mostly comprise it. Typical
rate of the information progress along the shift registers stated in the FPGA is within the range of
100-250 Mbit/s, and the number of functioning in MTD in parallel registers of the type may exceed a
hundred. That means, that the hardware realization performance can formally considerably exceed
even 10 Gbit/s. In fact it removes all the restrictions on the processing speed for such devices, which,
with the ensured by the multithreshold algorithms efficiency energy parameters, makes them the
sole leaders among all the other methods of digital streams transmission via the costly satellite
and other channels. In particular, the already developed hardware MTD versions for earth remote
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sensing systems are especially useful, because it is their high-speed flows of digital data with limited
transmitter power that should be protected in every possible way using the error-correcting coding
methods. An image of a quick model of an MTD decoder at FPGA Altera is given in Fig. 4.

Figure 4. A model of an MTD decoder at FPGA Altera

9. THE USE OF MULTITHRESHOLD DECODERS IN PARALLEL CODING CIRCUITS

For the approximation of the boundaries of the MTD efficient performance to the channel
capacity it is possible to use it in circuits with parallel concatenation [9,10,18]. The basis of these
circuits’ architecture comprises the singling out in the self-orthogonal code C0 with a code distance
d0 and code rate R0 of a certain constituent code C1 with the code rate R1 > R0, which is also
self-orthogonal. The code distance d1 of the singled out code is chosen so as to be much less than d0,
and, as follows from Fig. 3, its efficient performance area will be closer to Shannon’s bound. While
decoding a parallel code several decoding iterations of the constituent code C1, are realized, which
enables to lower by about an order the BER in the information sequence received from the channel;
after that the remaining part of code C0 is introduced into the decoding process. A distinctive
feature of this parallel concatenation circuit is the fact that the external code is functioning at the
code rate of R0, while in the customary concatenation codes the external code’s code rate is close to
1. This feature ensures a considerable advantage of the MTD over other concatenation structures.

Thus, for example, in Fig. 5 the results of a simulation for circuits with parallel coding in a
channel with AWGN for a self-orthogonal code with R0 = 6/12, d0 = 13 and R0 = 5/10, d0 = 15
(curves ¿ParallelÀ) are given. In this case, in the parallel code with d0 = 13 an external code with
R1 = 6/11, d1 = 7, was singled out, and in the code with d0 = 15 a code with R1 = 5/9, d1 = 9
was singled out. The curves ¿ConstituentÀ in the figures reflect BER performance at the output
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of the singled out codes of the parallel circuit. Dot lines without markers in these figures are used
to show BER of the optimum decoding of codes with d = 7, 9, 13 and 15. For comparison sake
parameters of the decoded with the help of MTD customary self-orthogonal codes with similar
d and R (curves ¿CustomaryÀ) are also shown in Fig. 5. Let it be noted that for obtaining the
parameters’ values rather short codes were used, with the length of several thousand bits, and
10. . . 20 decoding iterations. With a certain increase of the decoder memory volume and a number
of the iterations realized via parallel concatenation we have already managed to get the parameters
represented in Fig. 5 by the ¿LongÀ curve. As follows from the analysis of the given graphs the
use of parallel coding enables MTD to function with a little over 1,5 dB of the channel capacity.

Figure 5. Simulation results for a parallel code on the basis of MTD in a channel with AWGN

The MTD complexity during parallel coding (in the terms of the number of operations per-
formed) appears even less than the complexity of a customary MTD, as in this case during the first
decoding iterations certain elements of the syndrome register simply do not participate in the sum
calculation process at the threshold element.

10. CONCATENATED CODES DECODED WITH THE USE OF MTD

The high MTD performance parameters contribute to its wide use as a component of different
coding structures as their efficiency is directly connected with the efficiency of their constituent
elements.

A special place among the code circuits on the basis of MTD is taken by its concatenation with
parity check codes, the use of which enables to boost the efficiency of the coding application. The
specific nature of the following circuit amounts to the concatenation requiring practically no extra
equipment expenditure (for example, only one modulo-two adder should be introduced into the
coding circuit), while the use in a concatenated code, for example, Reed-Solomon codes, appears
to be much more difficult. The principles of MTD concatenation with a parity check code are
considered in [9, 10,18].

The efficiency of performance of concatenated circuits comprising a self-orthogonal code with
d = 7 and 9 and parity check code with the length of 50, for a channel with AWGN is given in

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 8 � 1 2008



THE MULTITHRESHOLD DECODING ALGORITHM 79

Fig. 6. As can be seen from the figures, the concatenated code on the MTD basis turns out to be
much better than an unconcatenated one. At that the use of the simplest parity check code together
with a self-orthogonal code enables to obtain an additional coding gain of about 1. . . 1,5 dB with
an BER at the decoder output amounting 10−5. It should also be noted that a concatenated code
comprising a Reed-Solomon code (255, 223, 33) and a convolutional code with a code rate of 1/2 and
code length restriction K = 7, decoded with the help of an optimum Viterbi algorithm, even with a
lower total code rate (R ≈ 0, 437) appears inferior to a concatenated circuit on the MTD basis with
BER grater than 10−6. It should be mentioned that using concatenation with a parity check code
together with the considered previously parallel coding might result in obtaining additional coding
gain. An example of performance of such a circuit is given in Fig. 6 via curve ¿MTDp+PCCÀ.
The use of a low redundant code in the external cascade of the circuit enables to get as small as
desired error probability with energy loss of about 0,1. . . 0,2 dB.

Figure 6. Simulation results for a concatenated code on the MTD basis in a channel with AWGN

The complexity of the decoding of the analyzed concatenated circuit as compared with the
complexity of a customary MTD is increased for the complexity of the parity check code decoder
amounting to approximately only two operations per information bit.

11. MULTITHRESHOLD ALGORITHMS IN NON-EQUAL ENERGY CHANNELS

Let us describe a representative example of a very simple modification of the MTD algorithm,
which, taking into account the concrete method properties, is making very precise use of its prop-
erties, and practically without any complication of the method itself improves its energy efficiency
performance crucially in total accordance with the principle ¿from simple to efficientÀ. It is just
that the correlation of the signal system with the properties of the code and decoder is taking place
here.

Let us consider a two-channel scheme of the transmission of digital data via satellite, space and
other communications channels with rather a high level of Gaussian noise. Let us choose for a
certain signal/noise ratio, initially the same for each of the considered communications channels,
such a redistribution of the total integral energy that should be able to ensure a maximum possible
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independent subsequent coding of the received information symbols on the basis of multithreshold
decoding of binary block or convolutional codes. In other words the minimum level of the realization
of the error propagation effect during majority decoding should be chosen as a criterion of the best
energy redistribution among the channels. These issues have been rather well investigated in the
MTD theory [6, 9]. The reduction of this effect enables to achieve a considerable increase in the
convergence of the MTD decisions to optimum ones, which creates conditions for a more efficient
performance of the MTD algorithm under high noise levels.

Different ways of energy balancing can be considered for the forming of such an absolutely simple
new signal-code construction. For example, channels may be organized in such a way that the code
information symbols are transmitted via one of them and check codes via the other one. In this case
the error propagation analysis is maximum simplified, which enables to carry out rather prompt and
complete consideration of applicability of a maximum number of codes and their respective MTD
algorithms in such coding circuits. Such models got the name of non-equal energy channels [9,19].
They can be easily realized in ordinary digital data transmission channels.

As detailed analysis of a number of codes and certain MTD algorithms’ modifications for non-
equal energy channels with different parameters has demonstrated, the transfer of the MTD efficient
performance area boundary towards a higher noise level of the channel in the code rate R range
from 1/4 to 3/4 might amount to 1 dB, which is of utmost importance, as even the initial MTD
efficiency in ordinary channels appears to be rather high. At that the channels’ energy ratio should
be within the range from 1, 3 to 3, 2.

The necessity of functioning under higher noise level conditions requires an increase of the
number of decoding iterations in the MTD, but such an increase usually turns out to be not
greater than twofold, which enables to maintain the low complexity of the MTD realization both
in the hardware and in the software formats.

The new results obtained in this field are substantiated by graphs in Fig. 7, which demon-
strate the potential of the introduced algorithms and the already known methods. The graph
¿1) MTD-XÀ corresponds to the efficiency of a MTD decoder at FPGA Xilinx, curves ¿5)
MTD+CC1À, ¿6) MTD+CC2À and ¿7) MTD+CC3À are given for the MTD application in
the simplest concatenated circuits with parity check control. All these have been discussed in great
detail in [15]. Fig. 7 also gives efficiency curves for a Viterbi algorithm with a standard code with
the length K = 7 (curve ¿3) AV, K=7À) for a concatenated circuit of a Viterbi decoder with a
Reed-Solomon code (curve ¿4) AV+RSÀ), for a turbo code (curve ¿9) TurboÀ) [2] and a low-
density parity-check code recommended in the DVB-S2 standard [20] (curve ¿10) LDPCÀ). It
should be noted that for the realization of a high speed decoder of low-density parity-check codes
at FPGA the efficiency loss amounts to more than 0,5 dB (curve ¿11) LDPC (FPGA)À). The
¿C = 1/2À vertical characterizes the capasity of a Gaussian channel, the designers keep striving
at obtaining improving the decoding characteristics at the code rate of R = 1/2. ¿MTD-LÀ –
is a long code and a MTD decoder with I = 40 iterations realized in the SRI RAS at FPGA
Altera. The new result for a MTD and a non-equal energy channel is represented by a dot line
¿8) MTD+NECÀ. It means an opportunity of a very simple and considerable increase of the code
decoding efficiency under a delay in decision taking not exceeding 400000 bits, under which the well
known and rather high MTD functioning rate is preserved both in the software and (especially) in
the hardware format.

Taking into account the achieved closeness of the MTD efficient functioning area to the commu-
nications channel’s capasity, the prospects of MTD for further approximation of its characteristics
to the Shannon bound can be considered to be good. At that, a sufficient advantage of MTD over
other algorithms in the number of operations amounting to one-two decimal exponents for differ-
ent combinations of coding parameters, gives ground to assume that it is possible to use MTD
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Figure 7. Performance of MTD, Viterbi decoder, turbo and low-density parity-check codes in a Gaussian
channel with R = 1/2

actively in the development of advanced digital data transmission hardware for space and satellite
communications channels.

12. CONCLUSION

The use of MTD in satellite and other costly channels enables to realize randomly high processing
rate and boost their coefficient of performance considerably. An extremely simple arrangement of
MTD as compared with other methods efficiency comparable with it makes them preferential for
hardware realization in quick broadband channels. In rather low speed communications channels
even software MTD realizations are most efficient; they require the composition of only several
dozen commands of the program code for the threshold element. Simple methods of codes and
signals correlation boost the MTD potential even further and make its realization especially easy.
The absolutely insignificant difference in the efficiency of MTD and certain most complex decoders
of other types, will be, apparently, overcome in the near future as follows from the dynamics of the
MTD characteristics improvement.

Thus, as a result of an almost four decades research effort, a broad class of multithreshold algo-
rithms has been developed, which might appear of use for many modern high speed communications
systems with maximum possible coding gain levels and unattainable for other algorithms processing
speed.

The MTD research testifies to the effect that the algorithms with irrational use of computational
resources are by far behind the much easier methods, which solve the decoding challenge more
efficiently and economically. It is apparent that the issue of the complexity of the coding realization
will continue to exist in the foreseeable future, and due to the growth of information exchange speeds
and the necessity of increasing the integrity of information during its transmission and storage,
the demand for a prompt decoder realization will be all the more urgent. Especially preferable
among all the realization variants will be algorithms performing only very easy, uniform and speedy
operations. MTD conform to these requirements to the utmost. And the compliance of its potential
with the characteristics of the most complex algorithms makes multithreshold algorithms all the
more attractive.
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More detailed information and research results on MTD are given at the specialized website of
the SRI RAS www.mtdbest.iki.rssi.ru.

Realization of research on the MTD algorithms was supported by the Council on complex
problems of cybernetics of the AS of the USSR, SRI RAS, FSUE NIIRadio and grants of the
Russian Foundation of Basic Research N05-07-90024, N08-07-00078.
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