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Abstract – Multithreshold decoder (MTD) for 
self-orthogonal codes and its performance over 
Gaussian channel are reviewed. It’s shown that 
MTD is in many cases as effective as an optimum 
decoder. MTD implementation complexity is also 
discussed.  

Keywords: iterative process, optimal decod-
ing, majority and multithreshold decoding, MTD. 

Introduction 
As it is known, the use of error-correcting 

coding enables to solve a variety of tasks in digital 
networks. The main advantage of communications 
systems using coding amounts to the fact that the 
efficiency of the channels use appears in many times 
higher as when codes are not used. The coding gain 
is usually chosen a measure of the efficiency.  

Decoders realizing the well known to special-
ists Viterbi algorithm (AV) [1], and also much more 
complex code structures, such as turbo codes [2] and 
low-density parity-check codes [3], are currently 
being used in digital communications. Nevertheless, 
the currently used coding systems, especially those 
for high-speed channels, are still very complex or 
inefficient. Below consider the theoretical basis and 
concrete parameters of a highly efficient, high per-
formance and very simple iterative algorithm for 
error correction in high noise level channels which is 
the result of development of the concept of linear 
convolutional codes majority decoding [4]. 

The advance in technology of decoding for 
error-correction codes within many decades surpris-
ingly was not connected in any way to methods of 
solution of a functional optimization problem for 
very many discrete variables. Nevertheless decoding, 
i.e. search of the unique code word among exponen-
tially large number of the possible ones, would be 
pure naturally to esteem from such stands. However, 
decoding algorithms developed before have not used 
in any way for a search of the best decoder solutions 
of well-known optimization procedures, which ones 
could be applied to search the code words located at 
minimally possible distance to the received word. 
But just threshold decoder (TD) [1], realizing the 
elementary error correcting method, has the useful 
properties, which are indispensable for implementa-
tion valuable effective and simultaneously extremely 
simple optimization decoding procedures.  

1. Repeated decoding principle 
In the past decade the theory and technology 

of error-correcting coding have progressed greatly. 
Introduced by many authors in the seventies of the 
twentieth century methods of repeated decoding 
turned out to be inefficient due to powerful error 
grouping at the decoder output. An example of such 
scheme with the threshold decoder (TD) [4] for a 
convolutional code is given in fig. 1.  

 

 
Fig. 1. An example of a scheme of repeated decoding 

on the basis of the threshold decoder 

Such decoder has low efficiency due to in-
tense grouping (propagation) of errors in the thresh-
old decoder. In fact if under a certain noise level in a 
binary symmetrical channel (BSC) TD make a 
wrong decision for a decoded information symbol, 
very dense error packet usually emerges at the output 
of that TD. For example, assume that a sequence 
decoded by the first TD decoder has come to the 
input of the second TD decoder (fig. 1). Then, if 
there are no errors in the information sequence after 
the first TD, there is no need for a second decoder. 
But when an error emerges at the output of the first 
TD, which is usually a starting point for the typical 
error packet of this TD, it appears that the second 
decoder, copying exactly the scheme of the first one 
and tuned only to random errors correction, will 
most probably fail to correct the packet. Hence there 
is no need to use second TD in this case. 

It should be noted that codes with low level of 
error propagation for TD were completely unheard in 
those days. Nevertheless, the problem was solved in 
full later with help of methods described in [5–14]. 
In this connection great importance appears to be the 
considered further new approach to the realization of 
simple efficient error correction procedure, which is 
under development since 1972 and is called multi-
threshold decoding (MTD) [5]. 



2. The multithreshold decoding 
background 
Consider an example of the simplest system 

of coding and threshold decoding for convolutional 
code of the code rate R=1/2 and the minimum code 
distance d=3, as shown in fig. 2.  

 
Fig. 2. Special projection of the coding system clari-

fying the new interpretation of the syndrome 

As follows from schemes of the coder and the 
simplest majority decoder, correcting in this case a 
single error, the decoder includes exact copy of the 
coder, which is forming its estimates of the check 
symbol on basis of the information symbols received 
from the channel. These estimates appear at the de-
coder point K and after they adding with the received 
from the channel checking symbols V̂  to form sym-
bols of the syndrome vector S, which depend only on 
the channel errors. Later these symbols come to the 
decoder threshold element from the syndrome regis-
ter, as is shown in fig. 2. 

The scheme of TD given in the figure enables 
to single out an easy way for organization of the 
proper optimization procedure, i.e. search for the 
best possible decision during decoding. To that pur-
pose let us stress the fact that has never been men-
tioned before: in the decoder syndrome register there 
is a difference by check symbols between the re-
ceived from the channel vector ]ˆ,ˆ[ VIQ =  and such 
code word A, the information symbols of which 
equal to the received from the channel information 
part of vector Q. 

It means that the full difference between the 
current hypothesis-decision of decoder A on the 
transmitted code word and the received vector Q will 
be in such modified decoder of the majority type in 
which only one vector will be appended to TD. This 
vector shall always contain the difference between 
the received vector Q and the current hypotheses A 
of the decoder on the information symbols. In this 
decoder it will be contained the full value of the dif-
ference and, consequently, the full distance between 
the decoder decision and the received vector. One 
should strive at decreasing this distance to the mini-
mum possible value, which is correspond to the deci-
sion of an optimum decoder (OD). 

Such approach to the problem of high effi-
ciency decoding is basis of the developed since 1972 
special iterative multithreshold decoders [5–14], 
almost coinciding with the classic TD and as simple 
in realization as their prototype.  

The changes that should be introduced into 
ordinary TD to transform it into MTD (as follows 
from the global optimization principle discussed in 
the previous section), amount only to the fact that the 
decisions of all threshold elements on the decoded 
symbols changes are first committed to memory in 
an additional differential register D, primarily, filled 
by zeros. These decisions are later used by the fol-
lowing threshold elements of the decoder as an addi-
tional checking procedure in course of further speci-
fication of the decoded symbols. Such decoder is 
already measuring full distances between newer and 
more likely potential solutions and the received vec-
tor Q. It changes the decoded symbols in such way 
that every new decision of such MTD is always 
closer to the received vector. In many instances it 
enables to practically completely realize corrective 
potential of the used codes. Examples of concrete 
MTD schemes are given in [9, 10]. 

After such rather unsophisticated improve-
ment the decoder obtains new very useful properties. 
The MTD decisions at every change of the informa-
tion symbols are strictly approaching the optimum 
decoder decision ensuring in many cases realization 
of this process even after several dozens of attempts 
of code block decoding. Certainly, to ensure high 
MTD efficiency at high noise in the channel it is 
essential to choose only special codes with low lev-
els of error propagation. This important issue was 
considered in [6, 8, 9]. 

Let us further proceed with a more formal 
consideration of the MTD potential. 

3. The MTD main theorem 
Consider a binary linear systematic block or 

convolutional self-orthogonal code [15] with the 
code rate R = k/n, where k is a number of informa-
tion bits, n is the code length. The parity-check ma-
trix for the code is set in systematic form: H=[C, I]. 

After transmission over BSC an optimum de-
coder minimizing the mean error probability chooses 
from a set of 2k equiprobable code words {A} a vec-
tor A0 for which the Hamming distance r = |Q⊕A0| 
would be minimum for the whole set {A}. Here Q is 
the received message, ⊕ is addition on module 2. 

Let us represent any binary code vector X of 
length n by a pair of information vector XI and check 
vector XV of length k and (n–k) respectively:  

X = [XI,XV]. 
Then we have the following  



Lemma. For each code vector A and the re-
ceived vector Q the ratio is true  

A⊕Q = [D,H[QI⊕D, QV]], (1) 
where vector D of the length k is defined by  

AI = QI⊕D. (2) 
Proof. Due to the linearity of the code  
S = H[QI⊕D,QV] = H[AI,AV⊕AV⊕QV] =  
 = HA⊕H[0I, AV⊕QV],  

where 0I  is a zero vector of length k. 
As HA = 0 and H[0I,AV⊕QV] = AV⊕QV, as 

AV⊕QV is multiplied only by identity submatrix I of 
H, we get  

S = AV⊕QV. (3) 
After substitutions in the right-hand side (1) 

with view of (2) and (3), we find that  
[D,S]=[D,AV⊕QV]=[D⊕QI⊕QI,AV⊕QV]=A⊕Q. 
Thus the syndrome vector S is actually (as it 

was given in fig. 2) a difference on check symbols 
between the received message Q and the code word A.  

The lemma is proved. 
The essence of the lemma amounts to the fact 

that the difference B = Q⊕A for any received vector 
Q and a code word A is defined by a pair of vectors 
[D,S]. Using exhaustive search over all set vectors 
{A} it is able to find vector A0, minimizing |B| and 
being the optimum decoder solution. By definition 
with D = 0 vector S is a usual syndrome of the re-
ceived message Q: S = HQ. For simplicity with 
D ≠ 0 we shall below call S a syndrome too as the 
generalization seems natural and is not resulting in 
any contradictions. It should be also noted that there 
is no need to calculate again all syndrome compo-
nents at each change of A. It appears quite sufficient 
to invert at each change of decoded symbol only 
components of S with odd amounts of errors in the 
changed information symbols.  

Consider a new decoding algorithm, which 
use discussed properties of self-orthogonal code.  

1. Let the decoder at the first preparatory 
stage perform calculation and memorizing of vector 
S. After that the decoding procedure is begun.  

2. Choose an information symbol ij and for 
the symbol it is calculated the usual sum of the syn-
drome components 

kjs  depended on an error ej in 

the decoded symbol ij (i.e. sum of checks }{ jj Ss
k
∈ , 

where {Sj} is a set of checks corresponded to symbol 
ij) and symbol dj corresponded to the decoded sym-
bol ij:  

j
Ss

jj dsL
jkj

k
+= ∑

∈ }{
. (4) 

Let us assume that initially D = 0 as before 
decoding there is only one received vector Q in the 
decoder and the decoder possesses no other more 
preferable hypotheses of the received message. 

Let us assume the threshold T as equal to a 
half of amount of addends in (4). For self-orthogonal 
codes T = d/2 = (J+1)/2.  

3. Let finally all J = d–1 checks, ij and dj be 
inverted if Lj > T and stay unchanged if Lj ≤ T.  

4. If decision about stopping decoding is not 
make go to step 2.  

For the first decoding attempt the proposed 
procedure while all dj = 0 is similar to the usual 
threshold decoder. Let us below refer to the decoder 
realizing the proposed algorithm as a multithreshold 
decoder (MTD).  

Theorem (The main theorem of multi-
threshold decoding). If at a j-th step of decoding 
MTD changes the currently decoded information 
symbol ij, then:  

a) at that MTD finds a new code word A2, 
closer to the received message Q, then code word A1, 
to which the ij meaning corresponded prior to the j-th 
step of decoding  

|B1| = |A1⊕Q] > |A2⊕Q| = |B2|; 
b) after completion of the j-th step decoding 

of any subsequent symbol ik, k ≠ j, is possible, so that 
its change will result in further approaching to the 
received message.  

Proof. Prior to the decoding of symbol ij it is 
true pursuant to the lemma  

[D1,S1] = [A1I⊕QI,H[QI⊕D1,QV]] = A1⊕Q, 
where  

A1 = [A1I,A1V], A1I = QI⊕D1.  
The weight of vector B1, before this step 

equal to |B1| = |D1|+|S1|, can be defined as an ordinary 
sum of weights W1 = L1j+X, where L1j is defined by 
(4) and is equal to the sum of checks and symbol dj 
at the threshold element, X is the weight of the other 
components of S1 and D1, not included into L1j. 

Consider code vector A2 differing from A1 
only in one information symbol ij and the respective 
difference B2 = A2⊕Q. As B1 and B2 differ only in 
the components coming to the threshold element 
|B2| = L2j+X, where L1j+L2j = J+1, as due to the code 
linearity each check and the dj are surely equal to 1 
in only one of vectors B1 and B2. 

As MTD change ij if L1j > T, it is essential for 
that to have L2 < L1 and, consequently, |B1| > |B2|, 
which proves item a) of the theorem. 

It is further evident that if symbol ij was not 
changed it is possible to decode any other symbol ik, 
k ≠ j, as the conditions of the lemma are hold. In case 
of change ij in accordance with the rules of MTD 
functioning after decoding ij equations A2I = QI⊕D2 
and S2 = H[QI⊕D2,QV] hold, where D2 differs from 
D1 in symbol dj, at changes via feedback from the 
threshold element of checks referring to ij, those 
components of S1 are inverted, in which S2 differs 
from S1. Hence, we get that after changing ij for the 



previously defined vectors D2, A2 and S2 the equation 
holds  

[D2,S2] = A2⊕Q,  
similar to the one, occurring prior to the change of ij. 
Thereby for subsequent decoding steps and changes 
of symbols ik, k ≠ j, there will be further approaching 
to the received from the channel message Q.  

The main MTD theorem is proved. 
It follows from the theorem that with each 

change of the decoded symbols MTD is getting 
closer and closer to the received vector Q, thus find-
ing closer and closer to the optimum decision and 
more likelihood vectors Ai. MTD views and com-
pares not an exponentially great amount of code 
words but only pairs of ones differing only in a sin-
gle information symbol with one of the compared 
words being in the decoder. In case the second code 
word turns out to be closer to vector Q, than the one 
in MTD, the decoder will switch over to that word to 
perform further comparison with the new intermedi-
ate vector Ai. It is clear that in principle it is possible 
to carry out a large number of decoding attempts for 
all code symbols. In that way convergence to the 
optimum decoder decision will be realized. It is cru-
cial that MTD complexity remains the same as for 
customary TD: a linear one. 

Let us further assume that MTD has reached 
the optimum decoder decision, i.e. there are symbols 
of vector A0 in the MTD information register. Then it 
is true that:  

Corollary. MTD is not change the decision 
of an optimum decoder.  

Proof. If the MTD changes a single informa-
tion symbol in vector A0, than another code vector 
A* was found, which is closer to Q than A0. But it is 
impossible, because by definition the closest to Q is 
vector A0. 

The corollary is proved. 
Thus, the stability of MTD decision on the 

optimum decision is shown: having reached that, 
MTD is going to stay there. It is very important as 
the algorithm implies an opportunity of multiple 
changes of the decoded symbols. 

It might also be noted that during the proving 
of the main MTD theorem the uniqueness of the de-
coded symbol ij was not used in any meaningful way. 
It follows that the decoding procedure can be applied 
to any group of information symbols [6, 8, 9]. 

To apply MTD algorithm for a channel with 
additive white Gaussian noise (AWGN) with quanti-
zation of the received binary stream into M levels, 
M>2, it is convenient to present the likelihood func-
tion Lj as  

)12()12(
}{

−+−= ∑
∈

jd
Ss

jjj dwswL
j

jkj

kk
. (5) 

For an ordinary BSC this expression with 
check weights 

kjw  equal to 1 is evidently equivalent 
to (4). With consideration of a Gaussian channel, i.e. 
in case of M>2 signal quantization levels, weight 
coefficients for calculation of Lj may be chosen as 
relatively small real or integer numbers. Thus, the 
symbols decoded in MTD for a Gaussian channel 
should be changed with Lj > 0. At that, if M >> 1, 
then, as it is known corrective potential of the used 
codes and good algorithms of their decoding, MTD 
included, are usually improved by about 2 dB by the 
signal/noise ratio at the decoder input. 

4. Error propagation in majority 
decoders 
It follows from the results we have proved 

above that increase of the number of attempts to cor-
rect the symbols decoded before with the help of 
MTD might be actually of use, as with every change 
of the information bits there is transfer to decisions 
with higher likelihoods. Nevertheless, it does not 
mean that MTD is sure to approach the optimum 
decision. For many codes there exists a rather nu-
merous amount of channel errors combinations, 
which are corrected with an optimum decoder but 
not corrected with MTD. To considerable extent it 
occurs due to the fact that threshold decoders are to 
great extent subject to influence of the error propaga-
tion effect. The second and the rest subsequently 
connected improved TDs, from which a convolu-
tional MTD comprise, usually have to operate 
mostly with streams of error packets from prior de-
coding iterations. 

In [6, 8, 9] a method of error propagation es-
timation for self-orthogonal codes is given, it 
amounts to the concept that probability estimates for 
emergence of single and packets of errors at TD out-
put are calculated using multidimensional probability 
generating functions. This method is helpful both for 
selection of code in the least degree subject to error 
propagation influence and for choice of optimum 
weights and thresholds in MTD ensuring the least 
probability values for its decoding errors. 

Basis for new approach to error propagation 
estimates is rather convenient way of estimating of 
the probabilities for emergence of two errors within 
the constraint length or within each code block. It 
enables to generalize this method to comprise decod-
ing error packets of any weight. To ensure high effi-
ciency of MTD it usually suffices to consider packet 
weights not exceeding 3. At that one has to calculate 
within the parameter space with the number of di-
mensions 23d, where d is the minimum code distance 
of the code. But for codes with d=7 and more this 
task is too complex for computations. Nevertheless, 



in course of further investigation, methods of con-
siderable simplification of estimates of packets 
emergence probability were found, which later en-
abled to formulate complex criteria for future crea-
tion of codes with very low probabilities of the 
emergence of error packets during majority decod-
ing. The respective algorithms for development of 
such codes with the length n require realization O(n4) 
operations, which enables searching for efficient 
codes with lengths up to 500000 bits. Recently these 
algorithms were improved further. 

While decoding close to the channel capacity 
it is essential to use only very long codes. That is 
why the completed development of constructive 
methods of the codes creation with required quality 
solved in full problem of choosing codes with mod-
est error propagation level for high efficiency MTD 
decoders. 

5. Multithreshold algorithms ef-
ficiency 
The new results obtained in field MTD devel-

opment are substantiated in fig. 3, which demon-
strate potential of MTD algorithm and already 
known methods for error correction. The curve 1 
corresponds to the efficiency of MTD decoder im-
plemented on FPGA Xilinx, curves 5, 6 and 7 are 
given for MTD application in the simplest concate-
nated circuits with parity check control. All these 
results have been discussed in detail in [14]. Fig. 3 
also gives efficiency curves for Viterbi algorithm for 
the standard convolutional code of length K = 7 
(curve 3), for a concatenated circuit of Viterbi de-
coder and a Reed-Solomon code (curve 4), for a 
turbo code (curve 9) [2] and for a low-density parity-
check code recommended in the DVB-S2 standard 
(curve 10). It should be noted that at implementation 
of a high speed decoder for DVB-S2 low-density 
parity-check codes on FPGA the efficiency loss may 

be up to 0,5 dB (curve 11). Vertical curve “C = 1/2” 
characterizes the capacity of a Gaussian channel for 
the code rate R = 1/2. Curve 2 present performance 
of MTD for a long code with I = 40 decoding itera-
tions realized in the SRI RAS on FPGA Altera. The 
new result for MTD and a non-equal energy channel 
[9] is represented by line 8. It means opportunity of 
very simple and considerable increase of the decod-
ing efficiency at delay in decision not exceeded 
400000 bits, under which the well known and rather 
high MTD functioning rate is preserved both in the 
software and (especially) in the hardware format.  

Taking into account the achieved closeness of 
MTD efficient functioning area to the communica-
tion channel capacity, the prospects of MTD for fur-
ther approaching of its characteristics to the Shannon 
bound can be considered to be good. At that, suffi-
cient advantage of MTD over other algorithms in the 
number of operations on one-two decimal exponents 
for different combinations of coding parameters, 
gives ground to assume that it is possible to use 
MTD actively in the development of digital data 
transmission hardware for space and satellite com-
munication channels.  

6. The MTD algorithm realiza-
tion complexity 
The main MTD advantage is its extremely 

low decoding complexity. As in case with traditional 
TD in MTD at each iteration weighted checks are 
summed; if the sum is grater than the threshold the 
checks are changed together with the decoded sym-
bol. The number of decoding iterations I in this case 
is not exceed 50, and the general MTD decoding 
complexity is evidently estimated for d < 25 as  

)4)(2(~1 ++ IdN . 
But it is possible to decrease considerably the 

amount of iterative sum calculations at the threshold 
as the symbols at each of the threshold elements 
change during decoding very seldom. If with the 
same I and d decrease of MTD performance is possi-
ble about by 0,1 dB in energy, which is usually quite 
acceptable, the amount of operations will be de-
creased to:  

IcdcN 212 ~ + , 
where constants c1 and c2 are small integers [8–10].  

In case of hardware MTD implementation, for 
example, on serial FPGA Xilinx or Altera, tests car-
ried out confirmed their good efficiency parameters 
with simultaneously very high throughput up to 
1,6 Gbit/s. Such opportunity emerged after the reali-
zation of patented engineering solutions for hard-
ware MTD. Pursuant to these solutions such decoder 
turns into single-cycle decision circuit, and within 
each cycle it is able to make up to 40 decisions on 

 
Fig. 3. Performance of error-correcting codes with 

R = 1/2 over a Gaussian channel  



the decoding symbols. As result hardware MTD data 
rate can formally considerably exceed even 
10 Gbit/s. It removes all the restrictions on the proc-
essing speed for such devices, which, with the multi-
threshold algorithms performance, makes them the 
sole leaders among all the other methods of digital 
streams transmission over satellite and other high-
speed channels. In particular, the already developed 
hardware MTD versions for earth remote sensing 
systems are especially useful, because it is their 
high-speed flows of digital data with limited trans-
mitter power that should be protected in every possi-
ble way using the error-correcting coding methods.  

Conclusion 
The use of MTD in satellite and other chan-

nels enables to realize high processing rate and boost 
their performance considerably. The extremely sim-
plicity of MTD makes them preferential for hard-
ware realization in high-speed broadband channels. 
In rather low speed communication channels even 
software MTD realizations are most efficient; they 
require execution of only several dozen operations 
for the threshold element. Absolutely insignificant 
difference in the efficiency of MTD and other more 
complex decoders, will be, apparently, overcome in 
the near future as follows from dynamics of MTD 
characteristics improvement. 

More detailed information and research re-
sults on MTD are given at the specialized website of 
the SRI RAS www.mtdbest.iki.rssi.ru. Realization of 
research on MTD algorithms was supported by the 
Council on complex problems of cybernetics of the 
AS of the USSR, SRI RAS, FSUE NIIRadio and 
grants of the Russian Foundation of Basic Research 
№05-07-90024, №08-07-00078. 

Bibliography 
1. Viterbi A.J. Error Bounds for Convolutional 

Codes and an Asymptotically Optimum Decoding 
Algorithm, IEEE Trans., 1967, IT-13, pp.260–269. 

2. Berrou C., Glavieux A., Thitimajshima P. 
Near Shannon Limit Error-Correcting Coding and 
Decoding: Turbo-Codes, ICC'93, Geneva, 1993, 
pp.1064–1070. 

3. MacKay D.J.C., Neal R.M. Near Shannon 
limit performance of low density parity check codes, 
IEEE Electronics Letters, 1996, vol.32, no.18, 
pp.1645–1646. 

4. Massey J. Threshold decoding, M.I.T. 
Press, Cambridge, Massachusetts, 1963. 

5. Zolotarev V.V. A device for linear convolu-
tional codes decoding, Inventor's certificate of the 
USSR no.492878, Bulletin of inventions, 1975, 
no.43. 

6. Samoilenko S.I., Davidov A.A., Zolotarev 
V.V., Tretyakova Ye.I. Computer Networks, Mos-
cow: Nauka, 1981. 

7. Zolotarev V.V., Ovechkin G.V. Effective 
algorithms of error-correcting coding for digital 
communication, Electrosvjaz, Moscow, 2003, no.9, 
pp.34–37. 

8. Web site of IKI RAS 
www.mtdbest.iki.rssi.ru. 

9. Zolotarev V.V. The Theory and Algorithms 
of Multithreshold Decoding, Moscow: Radio i svjaz, 
Gorjachaja linija–Telecom, 2006. 

10. Zolotarev V.V., Ovechkin G.V. Error-
correcting coding. Methods and algorithms. The 
quick reference, Moscow: Gorjachaja linija–
Telecom, 2004. 

11. Zolotarev V.V., Nazirov R.R., Chulkov I.V. 
The Quick Almost optimal multithreshold decoders 
for Noisy Gaussian Channels, RCSGSO Interna-
tional Conference ESA in Moscow, 2007. 

12. Zubarev Yu.B., Zolotarev V.V., Ovechkin 
G.V., Strokov V.V. Multithreshold Decoders for 
High-Speed Satellite Communication Channels: 
New Perspectives, Electrosvyaz, 2005, no.2, pp.10–
12. 

13. Zolotarev V.V., Ovechkin G.V. Multi-
threshold decoders for channels with extremely high 
noise level, Telecommunicatsii, Moscow, 2005, 
no.9, pp.29–34. 

14. Zubarev Yu.B., Zolotarev V.V., Ovechkin 
G.V., Dmitrieva T.A. Multithreshold algorithms for 
Satellite Networks with Optimum Characteristics, 
Electrosvyaz, 2006, no.10, pp.9–11. 

15. Townsend R.L., Weldon E.J. Self-
Orthogonal Quasi-Cyclic Codes. IEEE Trans., 1967, 
IT-13, pp.183–195.  

16. Zolotarev V.V., Ovechkin G.V. The com-
plexity of high performance methods of error-
correcting codes decoding, Proc. 6th Intern. Conf. 
Digital signals processing and its application, Mos-
cow, 2004, vol.1, pp.220–221. 

17. Zolotarev V.V., Ovechkin G.V. The use of 
multithreshold decoder in concatenated coding 
schemes, Vestnik RGRTA, Ryazan, 2003, no.11, 
pp.112–115. 

18. Zolotarev V.V., Averin S.V., Chulkov I.V. 
Optimum Decoding Characteristics Achievement on 
the Basis of Multithreshold Algorithms 9-th 
ISCTA'07, Ambleside, 2007. 


